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Who am I ? 

I work at  Peritor in Berlin 

I tweet at  @jweiss 

I code at  http://github.com/jweiss 

I blog at  http://blog.innerewut.de 
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Peritor 

Working on 

http://scalarium.com 
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Agenda 

Application code 

Setup and deployment 

Framework code 

Rails Application Stack 

   Follow the application stack 
and look for 

•  Information leaks 

•  Possible vulnerabilities 

•  Security best practices 
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Rails Application Setup 



6 

Rails Setup 
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Rails Setup - FastCGI 
Es war einmal...
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Rails Setup - Mongrel 
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Rails Setup – mod_rails 
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Rails Setup – Unicorn 
Thin...
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Information leaks 
and 

vulnerabilities 
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Information leaks 

Is the target application a Rails application? 

•  Default setup for static files: 

/javascripts/application.js 

/stylesheets/application.css 

/images/foo.png 

•  URL schema 

/project/show/12 

/messages/create 

/folder/delete/43 

/users/83 
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Information leaks 

Is the target application a Rails application? 

•  Rails provides default templates for 404 and 500 status pages 

•  Different Rails versions use different default pages 

•  422.html only present in applications generated with Rails >= 2.0 

•  Dispatcher files not present in recent Rails versions 
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Sample Status Pages 

http://www.43people.com/500.html 

Rails >= 1.2 status 500 page 

http://www.twitter.com/500.html 

http://www.engineyard.com/500.html 
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Server Header 

GET http://www.haystack.com 

Date: Wed, 28 Oct 2009 11:23:24 GMT 
Server: nginx/0.6.32  
Cache-Control: max-age=0, no-cache, no-store  
… 

GET https://signup.37signals.com/highrise/solo/signup/new 

Date: Wed, 28 Oct 2009 11:54:24 GMT 
Server: Apache 
X-Powered-By: Phusion Passenger (mod_rails/mod_rack) 2.2.5   
Status: 200 OK 
… 
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Server Header 

GET http://www.twitter.com 

Date: Wed, 28 Oct 2009 11:23:24 GMT 
Server: hi 
Status: 200 OK 
… 

GET http://www.golfermail.org 

Date: Wed, 28 Oct 2009 11:13:41 GMT 
Server: Mongrel 1.1.5  
Status: 200 OK 
… 

# httpd.conf 
Header unset Server 
Header unset X-Powered-By   

Disable Server header 
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Information leaks 

Subversion metadata 

•  Typically Rails applications are deployed with Capistrano / Webistrano 

•  The default deployment will push .svn directories to the servers 

GET http://www.strongspace.com/.svn/entries 

… 
dir 
25376 
http://svn.joyent.com/joyent/deprecated_repositories/www.strongspace/trunk/public 
http://svn.joyent.com/joyent 

2006-04-14T03:06:39.902218Z 
34 
justin@joyent.com 
… 

<DirectoryMatch "^/.*/\.svn/"> 
  ErrorDocument 403 /404.html 
  Order allow,deny 
  Deny from all 
  Satisfy All 
</DirectoryMatch> 

Prevent .svn download 



18 

Cookie Session Storage 

Since Rails 2.0 the session data is stored in the cookie by default 

Base64(CGI::escape(SESSION-DATA))--HMAC(secret_key, SESSION-DATA) 
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Cookie Session Storage 

Security implications 

•  The user can view the session data in plain text 

•  The HMAC can be brute-forced and arbitrary session data could be created 

•  Replay attacks are easier as you cannot flush the client-side session 

Countermeasures 

•  Don’t store important data in the session! 

•  Use a strong password,  
Rails already forces at least 30 characters 

•  Invalidate sessions after certain time on the server side 

… or just switch to another session storage 

confidential
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Cookie Session Storage 

Rails default session secret  

Set HTTPS only cookies  

Und ganz allgemein zu TLS:
https://github.com/rails/ssl_requirement
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Cross-Site Scripting - XSS 

“The injection of HTML or client-side Scripts (e.g. JavaScript) by malicious users into 
web pages viewed by other users.” 
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Cross-Site Scripting - XSS 

Cases of accepted user input 

•  No formatting allowed  

search query, user name, post title, … 

•  Formatting allowed  

post body, wiki page, … 
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XSS - No Formatting Allowed (Rails 2.x) 

Use the Rails `h()` helper to HTML escape user input 

But using `h()` everywhere is easy to forget.  

Better, use safeERB, XSS Shield, or rails_xss plugins: 

http://agilewebdevelopment.com/plugins/safe_erb 

http://code.google.com/p/xss-shield/ 

http://github.com/NZKoz/rails_xss 
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XSS - No Formatting Allowed (Rails 3) 

Rails 3 auto escapes strings in RHTML template 

Explicitly mark strings as HTML safe 
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XSS - No Formatting Allowed (Rails 3) 

rails_xss Plugin 

•  Build-in in Rails 3 

•  Introduces “Safe Buffer” concept 

•  Updates all the helpers to mark them as html_safe! 

•  Requires Erubis 

Install and get familiar with if on Rails 2.x 

http://github.com/NZKoz/rails_xss 

Built-in
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XSS - Formatting Allowed 

Two approaches 

Use custom tags that will translate to HTML (vBulletin tags, RedCloth, Textile, …) 

Use HTML and remove unwanted tags and attributes 

•  Blacklist - Rails 1.2 

•  Whitelist - Rails 2.0 
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XSS - Custom Tags 

Relying on the external syntax is not really secure 

Filter HTML anyhow 
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XSS - HTML Filtering 

Use the Rails `sanitize()` helper 

Only effective with Rails > 2.0 (Whitelisting): 
•  Filters HTML nodes and attributes 

•  Removes protocols like “javascript:” 

•  Handles unicode/ascii/hex hacks 
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XSS - HTML Filtering 

sanitize(html, options = {}) 

http://api.rubyonrails.com/classes/ActionView/Helpers/SanitizeHelper.html 
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XSS - HTML Filtering 

Utilize Tidy if you want to be more cautious 
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Session Fixation 

Provide the user with a session that he shares with the attacker: 
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Session Fixation 

Rails uses only cookie-based sessions 

Still, you should reset the session after a login  

The popular authentication plugins like restful_authentication are not doing this! 
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Cross-Site Request Forgery - CSRF 

You visit a malicious site which has an image like this  

Only accepting POST does not really help 



34 

CSRF Protection in Rails 

By default Rails > 2.0 will check all POST requests for a session token  

All forms generated by Rails will supply this token 
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CSRF Protection in Rails 

Very useful and on-by-default, but make sure that 
•  GET requests are safe and idempotent 

•  Session cookies are not persistent (expires-at) 
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SQL Injection 

The user’s input is not correctly escaped before using it in SQL statements 
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SQL Injection Protection in Rails 

Always use the escaped form 

If you have to manually use a user-submitted value, use `quote()` 
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SQL Injection Protection in Rails 

Take care with Rails < 2.1 

Limit and offset are only escaped in Rails >= 2.1 

( MySQL special case ) 
.order()!
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JavaScript Hijacking 

http://my.evil.site/ 

JSON response 

The JSON response will be evaled by the Browser’s JavaScript engine.  

With a redefined `Array()` function this data can be sent back to http://my.evil.site 
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JavaScript Hijacking Prevention 

•  Don’t put important data in JSON responses 

•  Use unguessable URLs 

•  Use a Browser that does not support the redefinition of Array & co, 
currently only FireFox 3 

•  Don’t return a straight JSON response, prefix it with garbage: 

The Rails JavaScript helpers don’t support prefixed JSON responses 
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Mass Assignment 

User model 
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Mass Assignment 

Handling in Controller 

A malicious user could just submit any value he wants 
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Mass Assignment 

Use `attr_protected` and `attr_accessible` 

Start with `attr_protected` and migrate to `attr_accessible` because of the different 
default policies for new attributes. 

Vs. 
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Rails Plugins 

Re-using code through plugins is very popular in Rails 

Plugins can have their problems too 

•  Just because somebody wrote and published a plugin it doesn’t mean the plugin is 
proven to be mature, stable or secure 

•  Popular plugins can also have security problems, e.g. restful_authentication 

•  Don’t use svn:externals to track external plugins, 
if the plugin’s home page is unavailable you cannot deploy your site 

+ Gems
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Rails Plugins 

How to handle plugins 

•  Always do a code review of new plugins and look for obvious problems 

•  Track plugin announcements 

•  Track external sources with Piston, a wrapper around svn:externals 

http://piston.rubyforge.org/ 



46 

Conclusion 
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Conclusion 

Rails has many security features enabled by default 

•  SQL quoting 

•  HTML sanitization 

•  CSRF protection 

The setup can be tricky to get right 

Rails is by no means a “web app security silver bullet” but adding security  
is easy and not a pain like in many other frameworks 
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Questions? 
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Peritor GmbH 

Blücherstaße 22 
10961 Berlin 

Telefon: +49 (0)30 69 20 09 84 0 
Telefax:  +49 (0)30 69 20 09 84 9 

Internet: www.peritor.com 
E-Mail: kontakt@peritor.com 

!Peritor GmbH - Alle Rechte vorbehalten 

   


