
Rails Security

Jonathan Weiss, 30.10.2009

Peritor GmbH

Mit hotfixes von Carsten Bormann

2011-03-01

Danke!

2

Who am I ?

I work at Peritor in Berlin

I tweet at @jweiss

I code at http://github.com/jweiss

I blog at http://blog.innerewut.de

3

Peritor

Working on

http://scalarium.com

4

4

Agenda

Application code

Setup and deployment

Framework code

Rails Application Stack

 Follow the application stack
and look for

•  Information leaks

•  Possible vulnerabilities

•  Security best practices

5

Rails Application Setup

6

Rails Setup

7

Rails Setup - FastCGI
Es war einmal...

8

Rails Setup - Mongrel

9

Rails Setup – mod_rails

10

Rails Setup – Unicorn
Thin...

11

Information leaks
and

vulnerabilities

12

Information leaks

Is the target application a Rails application?

•  Default setup for static files:

/javascripts/application.js

/stylesheets/application.css

/images/foo.png

•  URL schema

/project/show/12

/messages/create

/folder/delete/43

/users/83

13

Information leaks

Is the target application a Rails application?

•  Rails provides default templates for 404 and 500 status pages

•  Different Rails versions use different default pages

•  422.html only present in applications generated with Rails >= 2.0

•  Dispatcher files not present in recent Rails versions

14

Sample Status Pages

http://www.43people.com/500.html

Rails >= 1.2 status 500 page

http://www.twitter.com/500.html

http://www.engineyard.com/500.html

15

Server Header

GET http://www.haystack.com

Date: Wed, 28 Oct 2009 11:23:24 GMT
Server: nginx/0.6.32
Cache-Control: max-age=0, no-cache, no-store
…

GET https://signup.37signals.com/highrise/solo/signup/new

Date: Wed, 28 Oct 2009 11:54:24 GMT
Server: Apache
X-Powered-By: Phusion Passenger (mod_rails/mod_rack) 2.2.5
Status: 200 OK
…

16

Server Header

GET http://www.twitter.com

Date: Wed, 28 Oct 2009 11:23:24 GMT
Server: hi
Status: 200 OK
…

GET http://www.golfermail.org

Date: Wed, 28 Oct 2009 11:13:41 GMT
Server: Mongrel 1.1.5
Status: 200 OK
…

httpd.conf
Header unset Server
Header unset X-Powered-By

Disable Server header

17

Information leaks

Subversion metadata

•  Typically Rails applications are deployed with Capistrano / Webistrano

•  The default deployment will push .svn directories to the servers

GET http://www.strongspace.com/.svn/entries

…
dir
25376
http://svn.joyent.com/joyent/deprecated_repositories/www.strongspace/trunk/public
http://svn.joyent.com/joyent

2006-04-14T03:06:39.902218Z
34
justin@joyent.com
…

<DirectoryMatch "^/.*/\.svn/">
 ErrorDocument 403 /404.html
 Order allow,deny
 Deny from all
 Satisfy All
</DirectoryMatch>

Prevent .svn download

18

Cookie Session Storage

Since Rails 2.0 the session data is stored in the cookie by default

Base64(CGI::escape(SESSION-DATA))--HMAC(secret_key, SESSION-DATA)

19

Cookie Session Storage

Security implications

•  The user can view the session data in plain text

•  The HMAC can be brute-forced and arbitrary session data could be created

•  Replay attacks are easier as you cannot flush the client-side session

Countermeasures

•  Don’t store important data in the session!

•  Use a strong password,
Rails already forces at least 30 characters

•  Invalidate sessions after certain time on the server side

… or just switch to another session storage

confidential

20

Cookie Session Storage

Rails default session secret

Set HTTPS only cookies

Und ganz allgemein zu TLS:
https://github.com/rails/ssl_requirement

21

Cross-Site Scripting - XSS

“The injection of HTML or client-side Scripts (e.g. JavaScript) by malicious users into
web pages viewed by other users.”

22

Cross-Site Scripting - XSS

Cases of accepted user input

•  No formatting allowed

search query, user name, post title, …

•  Formatting allowed

post body, wiki page, …

23

XSS - No Formatting Allowed (Rails 2.x)

Use the Rails `h()` helper to HTML escape user input

But using `h()` everywhere is easy to forget.

Better, use safeERB, XSS Shield, or rails_xss plugins:

http://agilewebdevelopment.com/plugins/safe_erb

http://code.google.com/p/xss-shield/

http://github.com/NZKoz/rails_xss

24

XSS - No Formatting Allowed (Rails 3)

Rails 3 auto escapes strings in RHTML template

Explicitly mark strings as HTML safe

25

XSS - No Formatting Allowed (Rails 3)

rails_xss Plugin

•  Build-in in Rails 3

•  Introduces “Safe Buffer” concept

•  Updates all the helpers to mark them as html_safe!

•  Requires Erubis

Install and get familiar with if on Rails 2.x

http://github.com/NZKoz/rails_xss

Built-in

26

XSS - Formatting Allowed

Two approaches

Use custom tags that will translate to HTML (vBulletin tags, RedCloth, Textile, …)

Use HTML and remove unwanted tags and attributes

•  Blacklist - Rails 1.2

•  Whitelist - Rails 2.0

27

XSS - Custom Tags

Relying on the external syntax is not really secure

Filter HTML anyhow

28

XSS - HTML Filtering

Use the Rails `sanitize()` helper

Only effective with Rails > 2.0 (Whitelisting):
•  Filters HTML nodes and attributes

•  Removes protocols like “javascript:”

•  Handles unicode/ascii/hex hacks

29

XSS - HTML Filtering

sanitize(html, options = {})

http://api.rubyonrails.com/classes/ActionView/Helpers/SanitizeHelper.html

30

XSS - HTML Filtering

Utilize Tidy if you want to be more cautious

31

Session Fixation

Provide the user with a session that he shares with the attacker:

32

Session Fixation

Rails uses only cookie-based sessions

Still, you should reset the session after a login

The popular authentication plugins like restful_authentication are not doing this!

33

Cross-Site Request Forgery - CSRF

You visit a malicious site which has an image like this

Only accepting POST does not really help

34

CSRF Protection in Rails

By default Rails > 2.0 will check all POST requests for a session token

All forms generated by Rails will supply this token

35

CSRF Protection in Rails

Very useful and on-by-default, but make sure that
•  GET requests are safe and idempotent

•  Session cookies are not persistent (expires-at)

36

SQL Injection

The user’s input is not correctly escaped before using it in SQL statements

37

SQL Injection Protection in Rails

Always use the escaped form

If you have to manually use a user-submitted value, use `quote()`

38

SQL Injection Protection in Rails

Take care with Rails < 2.1

Limit and offset are only escaped in Rails >= 2.1

(MySQL special case)
.order()!

39

JavaScript Hijacking

http://my.evil.site/

JSON response

The JSON response will be evaled by the Browser’s JavaScript engine.

With a redefined `Array()` function this data can be sent back to http://my.evil.site

40

JavaScript Hijacking Prevention

•  Don’t put important data in JSON responses

•  Use unguessable URLs

•  Use a Browser that does not support the redefinition of Array & co,
currently only FireFox 3

•  Don’t return a straight JSON response, prefix it with garbage:

The Rails JavaScript helpers don’t support prefixed JSON responses

41

Mass Assignment

User model

42

Mass Assignment

Handling in Controller

A malicious user could just submit any value he wants

43

Mass Assignment

Use `attr_protected` and `attr_accessible`

Start with `attr_protected` and migrate to `attr_accessible` because of the different
default policies for new attributes.

Vs.

44

Rails Plugins

Re-using code through plugins is very popular in Rails

Plugins can have their problems too

•  Just because somebody wrote and published a plugin it doesn’t mean the plugin is
proven to be mature, stable or secure

•  Popular plugins can also have security problems, e.g. restful_authentication

•  Don’t use svn:externals to track external plugins,
if the plugin’s home page is unavailable you cannot deploy your site

+ Gems

45

Rails Plugins

How to handle plugins

•  Always do a code review of new plugins and look for obvious problems

•  Track plugin announcements

•  Track external sources with Piston, a wrapper around svn:externals

http://piston.rubyforge.org/

46

Conclusion

47

Conclusion

Rails has many security features enabled by default

•  SQL quoting

•  HTML sanitization

•  CSRF protection

The setup can be tricky to get right

Rails is by no means a “web app security silver bullet” but adding security
is easy and not a pain like in many other frameworks

48

Questions?

49

49

Peritor GmbH

Blücherstaße 22
10961 Berlin

Telefon: +49 (0)30 69 20 09 84 0
Telefax: +49 (0)30 69 20 09 84 9

Internet: www.peritor.com
E-Mail: kontakt@peritor.com

!Peritor GmbH - Alle Rechte vorbehalten

